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Abstract 

In this paper we show that, if 9’” is a residually small variety generated by an algebra with 
n < w elements, and A is a subdirectly irreducible algebra in ^/* with restricted type labeling, 

then IAl 5 FZ”” 
“i2 

1991 Math. Sut+. Class.: 08B26 

1. Introduction 

The two fundamental representation theorems for varieties of algebras are the HSP 

Theorem and the Subdirect Representation Theorem, both due to Birkhoff. The HSP 

Theorem states that the variety generated by a class K of similar algebras is the smallest 

class of algebras containing K which is closed under the formation of homomorphic 

images, subalgebras and products. The proof of the HSP Theorem shows in fact that _ 

V(K) = HSP(K). 

That is, if one closes under products, then subalgebras and finally under the formation 

of homomorphic images, then one obtains a class of algebra closed under all three 

constructions. This shows that an arbitrary member of V(K) may be represented as 

B/B where 8 is a congruence on B and B is a subalgebra of ni,, Ai, Ai E K. Since 

B < ni,, Ai, B is simply an algebra of vectors where, for each i, the values in the ith 

coordinate of a vector are from some fixed Ai E K. Therefore any member of V(K) 
may be considered to be an algebra of equivalence classes of vectors with coordinate 

algebras from K. Now, while it may be fairly easy to calculate coordinatewise with 
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vectors, it is usually quite difficult to calculate with equivalence classes of vectors. 

This difficulty is addressed by the Subdirect Representation Theorem. 

The Subdirect Representation Theorem states that any member of a variety J’ is 

isomorphic to a subdirect product of subdirectly irreducible members of F _. This implies 

that Y‘ = SP(Si) where Si is the class of subdirectly irreducible algebras in Y^. Where 

the HSP Theorem represents the members of I‘ = V(K) as algebras of equivalence 

classes of vectors, the Subdirect Representation Theorem represents these algebras as 

algebras of vectors. The latter representation is easier to work with, but it requires 

knowing the class of subdirectly irreducible members of Y‘. This leads naturally to 

the following problem: Given a class K of similar algebras, describe the subdirectly 

irreducible members of V(K). 

In many cases, it is a hopeless task to describe the subdirectly irreducible members 

of V(K), even when K is well-understood. The case when K = {A} consists of 

a single finite algebra has received the most attention. Here the approach has been 

to prove general theorems which either (i) show that V(A) has a proper class of 

subdirectly irreducibles or (ii) produce a finite cardinality bound on the size of the 

subdirectly irreducible algebras in V(A). Some theorems have been found which have 

a fairly general scope, but this type of approach leads one to wonder if there are finite 

algebras A which fit into neither category. Indeed, versions of the following conjecture 

concerning the distribution of subdirectly irreducible algebras remained open for more 

than 20 years. (To explain the wording, a variety is residually large if it has a proper 

class of isomorphism types of subdirectly irreducible algebras. Otherwise it is residually 
smaN. ) 

The RS Conjecture. IJ’ A is a finite algebra and V(A) is residually small, then there 
is a finite bound on the size of its subdirect1.v irreducible members. 

The conjecture states that if A is finite and V(A) has some bound on the cardinality 

of its subdirectly irreducible members, then it has a finite bound. This is sometimes 

expressed as, ‘If A is finite and V(A) is residually small, then V(A) is residually 

<< 0.’ 

Attempts to prove the RS Conjecture led to a vigorous investigation of the combina- 

torics of finite algebras which continues today. We are referring to what is called tume 
congruence theory and [3] is the handbook of the theory. Tame congruence theory 

associates with each covering pair of congruences a number from one to five. This 

number explains the local behavior of polynomial operations with respect to the cho- 

sen congruences. The number is called the type of the covering. The set of all numbers 

associated with a finite algebra A is called the type-set of A and it is written typ{A}. 

We write typ{V(A)} to denote the set of all type labels associated with finite members 

of V(A). In all cases the type-set of an algebra or variety is a subset of {1,2,3,4,5}. 

Although there are many papers classifying the residually small subvarieties of cer- 

tain well-known varieties, we mention only a few of the important results which led 

up to this paper. Not all of these results were proved with tame congruence theory, but 
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we state the results in the language of tame congruence theory so that a comparison 

can be made. 

(1967) Jonsson’s Lemma (see [4]) implies that the RS conjecture holds if typ{V(A)} 

C{3,4} and all minimal sets have empty tail. 

(1981) The paper [l] by Freese and McKenzie proves, among other things, that the 

R’S conjecture holds if typ{V(A)} C{2,3,4} and all minimal sets have empty 

tail. 

(1983) Hobby and McKenzie prove that the RS conjecture holds if typ{V(A)} C{2,3,4}. 

(1986) McKenzie proves that in a finitely generated residually small variety for which 

typ{ Y} C{ 1,2,3,4} there is a finite cardinality bound which holds for all sub- 

directly irreducible algebras whose monolith is of type 2, 3 or 4. 

(1991) The author proves that in any finitely generated residually small variety there 

is a finite cardinality bound which holds for all subdirectly irreducible algebras 

which omit type 5 and whose monolith is of type 2, 3 or 4. This bound depends 

only on the size of the generating algebra. 

This paper contains a proof of the last result. On the surface the statement of this 

result seems to be a small improvement over the preceding two results, but it is the 

first result obtained in this area which requires no global restriction on the variety, i.e., 

no type restrictions on the variety are assumed. 

The last two results on this list were not published at the time of their discovery. 

The hope was that these ideas would form a part of an eventual proof of the RS 

conjecture. However, in 1993, while attempting to extend the ideas from his 1986 

proof, McKenzie discovered a counterexample to the RS conjecture. Indeed, he went 

on to produce a sequence of even more startling counterexamples until he announced 

that he could interpret the halting problem into the problem of determining if V(A) 

is residually < < w for finite A (see [7]). Thus, the class of finite algebras which 

generate varieties which are residually < < o is recursively inseparable from the 

class of algebras which generate residually countable varieties which are not residually 

< < cc). Since then, McKenzie and Willard have shown that the class of finite algebras 

which generate varieties which are residually < < o is recursively inseparable from 

the class of algebras which generate residually large varieties. McKenzie has also 

shown that, for a finite algebra A, if V(A) has a cardinality bound on its subdirectly 

irreducible members, then that bound can be anything permitted by the early model- 

theoretic restrictions discovered by Taylor [lo] and McKenzie and Shelah [9]. About 

the only conjecture in this area that McKenzie did not solve negatively is the following 

one (which remains open). 

Conjecture. If A is a finite algebra with finitely many basic operations and ever)’ 
subdirectly irreducible algebra in V(A) is finite, then V(A) is residually c < Q. 

All of McKenzie’s new examples involve a heavy dependence on the pathology of 

type 5 quotients in finite algebras. It seems the appropriate time to publish our positive 

results on residual smallness, since it is now clear that good positive results cannot be 
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obtained for subdirectly irreducible algebras with type 5 quotients. Our theorem does 

give good positive results for almost any subdirectly irreducible algebra which omits 

type 5. (In our main theorem we permit all types other than 5, except we do not allow 

the monolith to have a type 1 label.) It is still an intriguing question as to whether the 

RS conjecture holds for varieties with no type 5 quotients. 

Throughout this paper we make free use of tame congruence theory. The reader is 

directed to [3] for the terminology and results of the theory. 

2. Large subdirectly irreducible algebras 

In this paper we are investigating finite algebras A for which there is a cardinality 

bound on the size of subdirectly irreducible algebras in V(A) = HSP(A). We shall 

find it more convenient to calculate in SP(A) rather than HSP(A). We need to be 

able to recognize from the members of SP(A) whether or not there will be large sub- 

directly irreducible algebras in HSP(A). Thus, rather than work with large subdirectly 

irreducible algebras directly, we shall work with algebras which have large subdirectly 

irreducible homomorphic images. The next lemma, which is a basic tool, gives a nec- 

essary and sufficient condition for an algebra to have a large subdirectly irreducible 

homomorphic image. 

Lemma 2.1. An algebra B has a subdirectly irreducible homomorphic image of car- 

dinality 2 K if and only if there is a I-tuple (a, b,X, y) satisfying the following con- 

ditions: 

(i) a.b E B, XcB, 

(ii) y E Con B and (a,b) $ y, 

(iii) for every $ E Con B with $ > y the following implication holds. 

Ixl($I~)l < ~c * (a,b) 6 $. 

Proof. If B has a homomorphism onto a subdirectly irreducible of cardinality 2 IC, then 

choose y to be the kernel of the homomorphism. Necessarily y is completely meet- 

irreducible. Let y* denote the upper cover of y. Choose a, b E B so that (a, b) E y* - y 

and let X be any transversal for y. Note that 1x1 = IA/y] > rc. Note also that the only 

$ > y for which (a, b) $ $ is $ = y and for this value of $ we have $]x = O-u, since 

X is a transversal for y = $. Hence, for any $ > y we have ]X/(I,!~X )I < K implies 

(a,b) E $. 
For the other direction, assume that there exists a 4-tuple (a, b,X, y) satisfying the 

prescribed conditions. Choose any $ > y maximal for the property that (a, b) $! $. The 

maximality of $ implies that B/I) is subdirectly irreducible while condition (iii) of the 

lemma guarantees that 

Hence, B has a subdirectly irreducible homomorphic image of cardinality > ti. 0 
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In the rest of this paper, whenever we have to prove that a variety of the form 

V(A) has a proper class of subdirectly irreducible algebras, we shall find it sufficient 

to produce for each K an algebra B, E SP(A) which has a 4-tuple (a, b,X, y) satisfying 

conditions (i) - (iii) of Lemma 2.1. 

3. Generalizing Jhsson’s Lemma 

Our goal in this section is to extend Jonsson’s Lemma to arbitrary finitely gener- 

ated, residually small varieties. The classical version of Jonsson’s Lemma for finitely 

generated, congruence distributive varieties is: 

Lemma 3.1 (Jonsson’s Lemma [4]). Let K be a jinite set ofjnite algebras such that 
V(K) is congruence distributive. If A E V(K) is subdirectly irreducible, then A E 

HS(K). 

A generalization of this lemma to congruence modular varieties appears in [2]. A 

version of that result for finitely generated, congruence modular varieties is the follow- 

ing. (In this statement (0 : p) denotes the largest congruence 6’ such that [e,~] = 0.) 

Lemma 3.2. Let K be a jinite set of finite algebras such thut V(K) is congruence 
modular. If A E V(K) is a finite subdirectly irreducible with monolith p, then A/(0 : 

cc) E HSW). 

The Jbnsson’s-type lemma that we shall prove in this section is 

Lemma 3.3. Let K be a finite set of jinite algebras. Assume that V(K) is residually 
small. If A E V(K) is a finite subdirectly irreducible with monolith p and 

(i) 5 @ typ{A). 
(ii) typ(O,p) # 1; 

then A/(0 : ,u) E HS(K). 

The following result is a first step to proving our Jonsson’s-type lemma. 

Lemma 3.4. Let A be a finite algebra which has congruences 6 + 8 and vi. i < n, 
such that A,,, vi 5 6. Zf typ(6,Q) E {2,3,4}, then C(O, vi; S) holds for some i. 

Proof. What we actually prove is that if typ(6,Q E {2,3,4} and q is any congruence 

on A where N2 $Z (q U S) for some (6,(J)-trace N, then C(O,q; 6) holds. This will 

suffice to prove the lemma as we now explain. If N is a (6, @-trace, (u, u) E N2 - 6 

and Aitn q < 6; then (u,v) e yli must hold for some i. Thus, (u,u) E N2 - (qr U 6) 

for some i. Proving that N2 $ (r~ U S) implies C(0, q; S) will establish the lemma. 

Assume that N2 9 (?Ud) for some N and some q. Choose U E MA(~, 0) containing 

N and choose (u, v) E N2 - (9 U 6). Assume that C(Q, 9; S) fails. Then, since 0 = 
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Cg(u,u) V 6, C({(u, u)},~; 6) fails too. Therefore, there is a polynomial p(x,j) E 

PO1 m+r A and elements (ai, b/- ) E v such that 

P(K 5) 6 P(U? 6, 

while 

g = p(c, a) f!l - 6 p( I:, 6) = h 

(or else the same statement holds with u and u switched). All four of the elements in 

these two equations belong to the same O-class. Choose f E Poll A such that f(A) C U 

and (f(g), f(h)) @ 6. Composing f with p we may assume p(A”+’ ) C U and therefore 

that the four elements of the previous displayed equations all belong to the body of 

U. If typ(b, 6) E {3,4}, then the four elements in the last two displayed equations 

are among the two distinct elements of the body of U and these elements are u and 

t’. Hence, { p(v, a), p( u, 6)) = {u, u}. But (p( ~1, a), p( ~6)) E ye while (u, 2’) @ q. This 

contradiction shows that typ(6,O) @ {3,4} if C( 8,~; S) fails. We are forced to conclude 

that typ(G, 0) = 2. Let d(x, y.z) be a pseudo-Mal’cev polynomial of U. We may assume 

that d(A3) L U. Let q(x, j) = d( p(x, _f), p(x, b), p( u, 6)). Then 

q(u, 6) = p(u, 6) = q(v, 6) 

while 

q(u,G) 6 p(4) tl- s p(u,Z) = q(t,C). 

All elements in these equations belong to the body of I/. Now define a polynomial 

7(x, V) = d(q(x, j). q(u, j), q(u, 6)). We have 

Y( u, 6) = q( u, 6) = Y( u, b) 

while 

r(u,i) = q(u,6) 6 q(u.5) 0 - 6 q(u,C) s r(2:,Z). 

Since r(Blr,,5) $Z 61 LI, r(x,a) is a permutation of U. Let 7:’ be a polynomial inverse 

to r(x,i) on U. Then we have 

while ri’r(tl,Z) = U. In particular, (u,tl) = (~~‘~(~:,6),r~‘l.(~,a)) E ~1. Again we face 

the same contradiction: u and u were chosen so that (u, u) @ ye. This contradiction 

proves the lemma. 0 

It will be worth our while to show now how Lemma 3.4 can be used to prove the 

finitely generated version of the classical Jonsson’s Lemma as well as its generalization 

to congruence modular varieties. This will suggest what further work is necessary in 

order to establish our Jbnsson’s-type lemma. 
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Proof of Lemmas 3.1 and 3.2. Let A be a finite subdirectly irreducible in V(K). 

Then A may be represented as B/S where B is a subalgebra of some finite product 

n,,,, Cj, Cj E K, and 6 is a congruence on B. Let r/i be the congruence on B which 

is the restriction to B of the kernel of the ith projection Zi : nitn Cj -+ Ci. Since 

B is embedded in n,,, Cj we have &<,, vi = 0 < 6. Since B/S ” A is subdirectly 

irreducible, 6 has a unique upper cover in Con B which we label 0. In Lemmas 3.1 

and 3.2 we are in a congruence modular variety, so by Theorem 8.5 of [3] we must 

have typ(6,0) E {2,3,4}. Now we may use Lemma 3.4 to conclude that for some i 

we have C(0, vi; 6). 

In a congruence modular variety the centralizer relation is symmetric in its first two 

variables. In fact, in a congruence modular variety we have 

These bi-implications are proved in [2, Ch. 41. Thus, from C(0, vi; 6) we deduce that 

vi < (6 : 0). From the Second Isomorphism Theorem we have 

B/(6 : 0) E H(B/qi) C HS(Ci) C HS(K). 

If p is the monolith of A, then (since 016 is the monolith of B/6 E A) we have 

A/(0 : p) E B/(6 : 0). Hence, A/(0 : p) E HS(K) which proves Lemma 3.2. 

In Jonsson’s Lemma, we even have that V(K) is congruence distributive. As is 

shown in Exercise 1 of [2, Ch. 81, the commutator equal the intersection in this case, 

so (0 : p) = 0 in A. Thus, 

A E A/(0 : p) E HS(K). 

This proves that every finite subdirectly irreducible in V(K) is contained in HS(K). But, 

this imposes a finite cardinality bound on the finitely generated subdirectly irreducibles 

in V(K). By Lemma 10.2 of [2], V(K) has no infinite subdirectly irreducibles. Thus, 

every subdirectly irreducible member of V(K) is contained in HS(K). This proves 

Lemma 3.1. 0 

Looking over the proof of Lemma 3.2 we find that there are exactly two places 

where we used the assumption that V(K) is congruence modular. We first used it 

to deduce that typ(6,0) E {2,3,4}. We later used it to deduce from C(0, ql; 6) that 

C(qi, 0; S) holds. This indicates that most of this proof works without any modularity 

assumption if 

(i) we restrict our attention only to subdirectly irreducible algebras A where typ(O, cl) 

E {2,3,4} (since typ(0,~) = typ(6, U) in the above proof), and 

(ii) we find some other way to deduce from C(0, r/i; S) that C(yj, 0; 6) holds. 

This is what we intend to do. We shall outline our strategy for the proof of Lemma 

3.3 in the next few paragraphs using the notation of the previous proof. 
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Fig. 1. Con B. 

The precise relationship between C(8, q; 6) and C(q, 6; S) when q, % and 6 are con- 

gruences on a finite algebra and 6 + 8 is explained in [6]. The following result is 

proved there. 

Theorem 3.5. Assume that yl_ 8 and S are congruences on a finite algebra A, S + B 

and typ(6,O) E {2,3,4}. Assume that U E MA(& 0) has body B and tail T. The 
following conditions are equivalent: 

(i> C(C 0; S>, 
(ii) C(O, y; 6) and ~Iu C B2 U T2, 

(iii) C( f3, q; 6) and r A q A (S : 0). 

(This theorem is a combination of lemmas and remarks from [6].) 

Now, in the argument which we used to prove the finitely generated version of 

Jonsson’s Lemma and Lemma 3.2 we are guaranteed by Lemma 3.4 that in Con B 

it is the case that C(0, vi; 6) holds for some i. Furthermore, from C(qi, 0; 6) one can 

finish the proof of each lemma. To prove our Jonsson’s-type lemma, let us analyze 

situations where C( 8, q; 6) holds for some y while C(Q 0; S) fails. 

The assumption that C(v], 8; 6) fails is equivalent to q $ (6 : d). Hence, there are 

a,p E Con B such that a + B 5 ye, CI 5 (6 : 19) and b $ (6 : 0). (Any such pair will 

do, but a specific SI which works is a = 4 A (6 : 0) and for this M we may take j3 

to be any congruence for which 2 + /Y 5 q.) Fig. 1 illustrates the order relationship 

between all the congruences of Con B mentioned so far. (Fig. 1 is plausible when 

typ(b,fI) = 2, but when typ(G,fI) E {3,4} we must lower (6 : O), CI and /I so that 

(6 : 0) = 6.) Since p < q we get that C(O,jI;s) holds. We cannot have C(b,Q;S), 

since /? $ (6 : 0). By Theorem 3.5 we find that p &fir\ (6 : 8) = a. Hence, typ(cc,fi) E 

{3,4,5}. Note that (a,/?) is perspective with some prime quotient in the interval Z[(S : 

O), I], hence with some prime quotient (a,~) in I[& 11. But since B/6 % A, we get 

that 

typ(a>P) = typ(a,p) E typ{& 1) Gtyp{A} G{1,2,3,4}. 
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It follows that typ(a,fl) E {3,4}. W e summarize what we know about Con B so far 

(assuming the hypotheses of Lemma 3.3 and that C(0,q; S) holds while C(n, 8; 6) fails): 

(i) typ(S, 0) E {2,X4}, 

(ii) typ(cc, B) E {3,4} and 
(iii) C(0,y;6). 

In the rest of this section we shall prove that these three conditions permit the con- 

struction of a proper class of subdirectly irreducible algebras in V(B) C V(K). As this 

is contrary to our hypothesis in Lemma 3.3, we shall be able to conclude that with the 

hypotheses of Lemma 3.3 we have 

We can then finish the proof of Lemma 3.3 in the same way that we finished the 

proofs of Lemmas 3.1 and 3.2. 

Let {O,l} be an (r,fl)-trace. Since typ(a,/?) E {3,4} we have that BIfs,,) is a min- 

imal algebra of type 3 or 4. Furthermore, since (0,l) E q, we get that C(0, (0, 1}2; 6) 

holds. Finally, 

so (0,l) @ (6 : 6) and in particular (0,l) $6 (C(S : 0)). 

The next two theorems indicate why this situation is impossible in a residually small 

variety. We maintain the notation of our discussion above. 

Theorem 3.6. Let B be ajnite algebra which has congruences 6 + 8 with 6 a meet- 
irreducible congruence. Assume that B has a pair of elements (0,l) 6 6 and that the 
,following conditions hold: 

(i) BLIP,,> is a minimal algebra of type 3 or 4, 
(ii) typ(6,13) = 2 and 

(iii) C(8, (0, 1}2; 6). 

Then V(B) is residually large. 

Proof. We shall only prove the case of the theorem where 6 = 0. For if we factor 

by 6, the hypotheses remain unaffected and our proof will apply in this case. This will 

prove that V(B/6) is residually large, and therefore that V(B) is residually large. 

B/6 ” A, according to our established notation, and 616 corresponds to p; so we 

need to prove the following. If 

(i) Ajfo,i) is a minimal algebra of type 3 or 4, 

(ii) typ(O, ~0 = 2 and 

(iii) C(p, (0, l}*; 0); 

then V(A) is residually large. 

Note that (0,l) @ f~ since (0,l) is a 2-snag and typ(O, cl) = 2. Hence Cg(0, 1) > p. 

We are now in precisely the situation of Lemma 10.2 of [3]. In first two paragraphs of 

Lemma 10.2 of [3], Hobby and McKenzie reduce the hypotheses of their lemma to three 

statements. Those statements are precisely the three conditions we have enumerated in 
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the last paragraph along with Cg(0, 1) > p. Their proof shows how to construct a 

proper class of subdirectly irreducible algebras in V(A), so our work has been done 

for us. 0 

Theorem 3.7. Let B be a jinite algebra which has congruences 6 + 8 with 6 a meet- 

irreducible congruence. Assume that B has a pair of elements (0,l) # 6 and that the 

following conditions hold. 

(i) Blfo,,) is a minimal algebra of’ type 3 or 4, 

(ii) typ(G, 0) E {3,4} and 
(iii) C(0, (0, 1}2; 8). 

Then V(B) is residually large. 

Proof. As in the last theorem, it suffices to work in A. Therefore, we replace B by 

A, 6 by 0 and 8 by p. Choose U E M*(O,p) and let B and T be the body and tail 

of U, respectively. Choose e E E(A) such that e(A) = U. To further set notation 

for this proof, let B = { u,z} and let x V y and x A y denote the pseudo-join and 

pseudo-meet polynomials of AIU with respect to the ordering z < U. Let q, p E PolzA 

be lattice polynomials on {O,l}. Say, q(O,O) = q(l,O) = q(O,l) = 0 = p(O,O) and 

q(1,1)=1=p(0,1)=p(1,0)=p(1,1). 

Since (u,z) E p 5 Cg(0, l), we get ,uLJu < Cg(O,l)l” and so there is a poly- 

nomial f E Poll A such that ef(0) = 24 # ef( 1) or else ef( 1) = 24 # ef(0). 

Both arguments are symmetric, so we assume that ef(0) = u # ef( 1). (Inciden- 

tally, the symmetry of these two arguments follows from the fact that A~I~,J) has 

both meet and join polynomials. It would not be enough in our argument for A[I~,J) 

to have a binary semilattice polynomial.) The fact that C(,U, (0, 1}2; 0) holds implies 

that C({U,Z}~, {ef(O), ef( 1)}2; 0) holds and C({U,Z}~, {u,z}~; 0) does not hold. Hence 

ef( 1) E U -B = T. Let u = ef( 1). Let w = z A u. Note that 

Since u E T we have (v, w) E ~1 r = Or, that is L’ = w. 

Now we begin a construction which shows that V(A) is residually large, contrary 

to our hypothesis. We define certain elements of A”: 0’ is the element (cj),<, E A” 
where Cj = 0 for all j # i and ci = 1. ui is the element (cj)j<K E AK where cj = K 

for all j # i and ci = v. zi is the element (cj)j<x E AK where Cj = z for all j # i and 

ci = zi. If x E A, we write x^ to denote the element (cj)/<K E AK with Cj = x for all j. 

If g(X) E Pol A, and g(X) = t*(X,ao,. . . , a,) for some term t and some ai E A, then 

we will write J(X) to denote the polynomial of A” which is equal to t*‘(Z, a&. . . , a^,). 
Let C be the subalgebra of A” generated by all elements of the form i, x E A, and 

all elements of the form O’, i < K. The universe of C contains all elements of the 

form ui (= cj‘(O’)) and zi (= 2Ru’). Let a = G, b = z^, X = {Oil i -=I K} and 

define 

y = CgC({(u’,z’)J i < K}). 



K.A. Kearnesl Journal of Pure and Applied Algebra I12 (1996) 293-312 303 

We claim that (a, b,X, y) is a 4-tuple which witnesses the fact that C has a subdirectly 

irreducible homomorphic image of cardinality > K. 

In this paragraph we show that if $ > y and 1X/($1x )I < K, then (a, b) E $. If 

I~/($lx)l < K, then we must have (O’,oi) E $ for some i #j. Then 

0’ = $O’, 0’) $4(0’, d) = 6. 

Thus, 

(U’,u^) = (&0’),2j‘(d)) E $ . 

This implies that 

(z’,2) = (&4’,2/7u^) E II/. 

Finally, we get that 

a=zi$u’yz’$z^=b. 

To finish the proof we must show that (a, b) $ y. Assume instead that (a, 6) = 

(2,;) E y. Then there is a Mal’cev chain u^ = x0,. . ,q = 2. We may apply P to 

every element of this chain and obtain another such chain, so assume that each xi is a 

member UK. We may of course assume that x0 # xl. Let us show that this leads to a 

contradiction. Since {x0,x1} = {r(ui),r(zi)} f or some r E PolrC satisfying r(C) 2 U” 

and x0 = ~2, it will suffice to prove that 

Both directions of this bi-implication can be proved with the same arguments, so 

assume that y(zi) = ~2. For some s(x, J) E Pol,+iA we may write T(X) = i(x, 0’0,. . , 

Oim-l ). Choose any j, k < K. We have r(zi) = ti, so 

(r(zi))j = s((z’)j, g) = i!d = s((d)k, 6) = (r(z’))k, 

where g,i E (0, l}m. But zi = z^fiu’ = ifie^](O’). Hence, we can rewrite the last 

displayed equation as 

.+’ A ef((O’),), g) = u = s(z A ef((O’)k), h). 

Since C(p, (0, 1 }*; 0) holds, we get that 

.$u A ef((O’)j),Lfj) = s(td A ef((O’)k),h). 

This holds for all j, k < K. Working backwards now and using liAZj(Ol) = z&’ = 

ui, we get that 

(r(u’))j = (r(ui))k 

for all j,k < K. Hence, r(ui) = 2 for some d E U. That is, (r(z’),r(u’)) = (zZ,G). In 

the ith coordinate this says that (for some 0 E (0, I}” ) 

24 = (Y(Zi))i = s(u,O) = (Y(Ul’)); = d. 
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This shows that ~(2~) = zi = 2 = r(ul) as we claimed. Our conclusion is that (a,b) = 

(u^,z^) @ y. It follows that V(A) is residually large. Since V(A) & V(B) we are done. 

0 

Proof of Lemma 3.3. In our remarks following Theorem 3.5 we assume that K is a 

finite set of finite algebras and A E V(K) is a finite subdirectly irreducible algebra 

with monolith ~1. We showed that if A/(0 : p) @’ HS(K), then there exist a non-abelian 

prime quotient (a, /?) as depicted in Fig. 1. If typ(cc, p) = 5, we argued that 5 E typ{A}. 

If typ(a,/?) E {3,4}, then Theorems 3.6 and 3.7 prove that V(A) is residually large. 

This concludes the proof. 0 

4. A Property of (0 : p) 

In this section we prove that if A is a finite subdirectly irreducible algebra contained 

in a residually small variety and p is the monolith of A where typ(O,p) = 2, then 

(0 : p) is abelian. 

Lemma 4.1. Assume that A is jinite, that A has a prime quotient (6, t3) of type 2 

and that U E MA(~, 19) has body B and tail T. Then (6 : Q)l, 2 B2 U T2. Further, B 

is a single (6 : %)l&ass. 

Proof. The first statement follows from Theorem 3.5(i) + (ii) with v = (6 : 0). For 

the second statement, the argument of Lemma 4.2 of [6] proves that (6 : 0) is the 

largest congruence y on A such that C(y,81~; S) holds. Since AIB is nilpotent and 

61~ + 01~ we get that C(Cg(B2), Olu; S) holds, so B2 C(6 : f3)(,. 0 

One consequence of Lemma 4.1 is that both C((6 : O), 8; 6) and C(B, (S : 0); 6) hold 

when typ(G, 0) = 2. The first follows from the definition of (6 : 0) while the second 

follows from (6 : tl)l, LB2 U T2 and Theorem 3.5. 

Theorem 4.2. Assume that A is a Jinite algebra with congruences 6 + 0 where 6 is 

meet-irreducible and typ(6,8) = 2. Assume also that V(A) is residually small. For 

any z, p E Con A we have 

(C(a, 8; S) & qe, p; 6)) * C(a, p; 6). 

Proof. C(a, $; 6) H C(a V 6, $; 6) for any $, so we lose no generality by assuming 

that a 2 6. Now each of the congruences in question lie above /3 A S, so factoring 

by this congruence we may assume that p A 6 = 0. Let us assume that C(a, 8; 6) and 

C(0, j?; 6) hold, but that C( IX, /?; S) fails. Then C(cr, 8; 0) fails, too, since for any three 

congruences it is true that 

C(a, P; p A 6) =+ C(a, P; 8). 
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Let [c(, /?I denote the least congruence x such that C(a, /3; x). From what we have said 

and the properties of the centralizer relation, 0 < [c(, fi] < a A fi. We proceed to argue 

that V(A) is residually large. 

Since C(a, /?; 0) fails, for some p E Pol n+lA and some pairs (0,l) E c( and (ri,si) E 

fl we have 

while 

g = p(l,r) [&PI - OA p(l,i) = A. 

Choose a minimal set U E MA(~, 8) a trace N 2 U and a pair (u, 2’) E N2 - 6. Since 

(g, h) E [a, /3] 5 p and g # h, we cannot have (g, h) E 6. As 6 is meet-irreducible, this 

implies that (u, u) E Cg(g,h) V 6. There is a Mal’cev chain u = x0,. .,x, = u where 

for each i < IZ we have {xi,xi+i} = {p&),pi(h)} or (xi,xi+i) E 6. Pick e E E(A) 

so that e(A) = U. If we apply e to the chain x0,. . .,x,, we get another such chain 

contained in U. In fact, the chain is contained completely inside the body of U since 

where B is the body of U and T is the tail. (u,u) # 6 by choice, so there is an i 

such that ep;(g) # epi(h) and both elements belong to the body of U. If we apply 

epi to both of the two displayed equations above which witness a failure of C(a, /3; 0), 

then we see that no generality is lost in assuming that p(A, A” ) C U and that all four 

elements in the previous displayed equations belong to B. We make this assumption. 

Let d(x,y,z) be a pseudo-Mal’cev polynomial of U. We assume that d(x,y,z) = 

ed(x, r,z) so that the range of d is contained in CT. Define p/(x, j) = d(p(x, j), p(x,S), 
~(1,;)). Using the previous displayed equations and the fact that d is Mal’cev on B 
we find that 

p’(O,S) = p(l,S) = p'(l,S) 

and 

p’(O,F) = p(l,S) # p(l,F) = p'(l,F). 

Let us set 1 = ~‘(0, F) = ~‘(0, S) = p’( 1, S) and m = p’( 1, ?). Both I and m belong 

to B and (2, m) E [a, /?I - 0~. Hence, (I, m) # 6 just as we argued for the pair (g, h). 

From this and the fact that AIB is Mal’cev, we get that 
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Fig. 2. The “comb” (cQ,c~,),<~ 

u 11 U u 

I_ ... 
U W u 

Fig. 3. The comb u2 

0 0 0 

4 ..* 
0 0 1 0 

Fig. 4. The comb 0’ 

Hence, there is a w E B such that (u,w) E Cg(l,m)jB and (u,w) E JIB. Since A]B is 

Mal’cev and (u, w) E Cg(l,m)ls there is a polynomial f E Poll A[B such that f(I) = II 

and f(m) = w. Let q(n, j) = fp’(x, j). Finally, we have 

q(O,f) = q(O,Z) = q(l,S) = U 

and 

q(l,F) = w. 

This prepares us to construct algebras in V(A) having 4-tuples (a, b, X, y) witnessing 

the fact that V(A) is residually > ti for any cardinal K. 

Let C be the subalgebra of A” x A’ whose universe consists of all tuples (CQ, Clj)j<a 

with the properties that 

(i) there is a c E A such that clj = c for and all but finitely many pairs (i,j), i = 

0 or 1 and j < K, and 

(ii) Coo B Coj CX Clj for all j < K. 

Pictorially, C is the subalgebra of all “almost constant combs” (see Fig. 2) in A’ x A”. 

We will use the notation uk, k < K, to denote the element (coj,Ctj)/<~ E C where 

Clj = u whenever (i,j) # (1, k) while c[k = w. We will use the notation Ok to de- 

note the element (caj, Ctj), <K E C where Cij = 0 whenever (i,j) # (1, k) while Ctk 

= 1. For example, u2 1s the comb pictured in Fig. 3 and O2 is the comb pictured in 

Fig. 4. 
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Fig. 5. The comb si 

For m < n we will use the notation .si to denote the element (cej,c~,)j<~ E C where 

ci/ = s, whenever j # k while COk = Clk = r,,,. Notice that there is a difference in the 

Ok-coordinate from the way we defined uk and Ok. As an example, .$, is the comb in 

Fig. 5. 

Since (u,w) E 0 5 CI, (0,l) E cr, (ri,si) E fl, all elements of the form ui, 0’ and sh 

belong to C. We use the notation ri to denote the comb (coj, cij)j<x where c;j = u for 

all i and j. Let a = u^ and let b = u”. Let X = {O’li < K}. Let y = Cg’({(u’,uj) E 

C’li,j < ti}). We now argue that (a, b,X,y) is a 4-tuple which witnesses the fact that 

C has subdirectly irreducible homomorphic image of cardinality > K. 

In this paragraph we establish that if $ > y and IX/(II/I.U)~ < K, then (a, b) E $. 

Assume that $ > 1’ and that IX/($(x)l < K. Since 

1x1 = I{O’li < K}I = K, 

it must be that (O’, ti) E $ for some i # j. Let ti = (s’ d o, ,,. . .,L(_,). Then the 

equalities established for q above guarantee that 

a = u^ = 4(0’,5’) $ $(d,j;i) = ui y u” = b. 

Thus, (a, b) E $. 

It remains to show that (a, b) @ y. If this were not so, then we could find a Mal’cev 

chain 

a = 2.2 =xo,...,x,-1 = u O=b ) 

where for each i we have (x;,xi+l) = (pi(tc’)ypi(&)) with pi E PoliC, j,k < K. If 

we apply 2 to the elements of this chain, we obtain another chain where all elements 

are among the elements of N” x NK. (Recall that e E E(A) was chosen above so that 

e(A) = U. Since y < e2K, all elements of the chain are 0=“-related to i and they belong 

to UK.) Let +, -, u be abelian group polynomials of AIN. We shall show by induction 

that, for each i < m, if x, = (Csj,Clj),<K in the previously displayed Mal’cev chain, 

then 

Here the sum is taken in N. (An inductive argument shows that for any Xi all but 

finitely many of the cij are equal to U, so the sum of all cli is at least defined.) The 
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case when i = 0 is trivial since x0 = 12. Hence, we will finish our inductive proof by 

showing that if .Xi = (coj,ctj)j<K and xi+1 = (c;~,c;~)~<~, then 

Since (Xi,Xi+t) = (pi(U’), pi(Uk)) and pi(x) = t”(x,G) for some polynomial t E Pol,+lA 

satisfying t(A, A’) C U and some tuple a E C’, we can write 

x; = t^(zci,at,...,a[) 

and 

x,+1 = f(uk,a,, . . .,U/). 

But uj and uk are equal at all coordinates other than the ljth and lkth. The same is 

true therefore of xi and xi+r. Thus, it suffices to show that 

(xi)lj + (Xi)lk 6 (%+l)lj + (xi+1 )lk 

or more specifically that 

d((xi)lj,(xi+l )lj,(Xi)lk) 6 (Xi+1 Ilk. 

We are using the fact that d(x, y,z) = x - y + z for elements x, y,z E N. Assume 

instead that 

d((xi)lj, (Xi+1 )lj, (Xl)lk) 8 (X,+1 )lk. 

Written in another way, this is 

Changing all occurrences of Glj to Goj and Ztk to &k and using the facts that C(CC, 8; 8) 

and that for each i we have ((Ui)sj,(Ui)lj), ((Ui)ok,(Ui)lk) E C! we get that 

Observe that since, say, t(w,ilj) E B, t(w,&j) E U and ((ai)aj,(ai)rj) E CI, we even 

have t(w, Coj) E B. Here we are using that tx( I/ < (6 : @)I u C B2 U T*. This argument 

shows that t(w,&j), t(w,&k), t(u,ao/) and t(u,&) all belong to B. Since d is Mal’cev 

on B this leads to 

d(t(w, Gj), t(u,c~j), t(u, Gj>> = d(t(w, aOj), t(w, Gj), t(w, hj>>. 

Define z(x, j) = d(t(w, a,-,), t(x, Coj), t(x, j)). Here is a summary of our knowledge 

of z: 

Z(U, &j) = Z(W, G)j) 
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while 

Z(% GOk 1 $4 u’, COk 1 

and all four elements belong to B. Define z/(x, j) = d(z(x, y),z(w, j),z(w,&)). We 

compute that 

Z'(W,ii*j) =Z(W,LZfJk) =Z'(W,L?ok) 

while 

Z'(U,&j) = Z(W,lTok) fYZ(U,&) = Z'(ll,tiok). 

But for each i < 1 we have ((ai)oj,(ai)ok) E p, so this is a failure of C(0,p;S). This 

contradiction invalidates our assumption that 

d((xi)lj>(xi+l )Ij3(&)lk) P tXi+l)lk. 

We conclude that 

tXi)lj + (Xi)lX s (Xi+l)lj + fXi+l)lk. 

By induction we find that for any i < m, if x, = (coj,~~~),<~, then 

( ) 

CClj 6 U. 

j-cx 

In particular, this must hold for x,-l = u'. But u” = (coj, ~l,)j<~ where all cij = II 

except cl0 = w. It follows that for x,,_i = u” we have 

c Clj = W b t' $8 li. 

j<ii 

This is a contradiction to our assumption that (a, b) E y. In other words, (a, b) $ 1~ as 

we claimed and the proof is finished. 0 

Corollary 4.3. Assume that A is a jinite subdirectly irreducible algebra with monolith 

p und that typ(O,p) = 2. Zf (0 : p) is nonabelian, then V(A) is residually Iarge. 

Proof. From Lemma 4.1 and the remarks that follow it C((0 : p), ,u; 0) and C(p, (0 : 

p); 0) hold. From Theorem 4.2 -C((O : p), (0 : p); 0) implies that V(A) is residually 

large. q 

5. Cardinality bounds 

Theorem 5.1. Assume that A is ajnite subdirectly irreducible algebra with monolith 

p und that typ(O,p) = 2. Zf a is an abelian congruence on A of index n, then 

IAl 5 n.mm, 

where m = [Fv(~,(n + 1)1. 
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Proof. Let Y be an E-class of maximum cardinality. Since CI has index n, it will suffice 

to show that IY] 5 mm. We assume that a > 0. 

Choose U E MA(O, II), e E E(A) such that e(A) = U and a pair of elements (0,l) E 

plr~ - 0~. Let Y denote the alu-class containing 0. Note that since (0,l) E plu 5 a]u 

we have (0, 1) c V. C(cc, a; 0) holds, so we have C(X, p; 0) and therefore u 5 (0 : p). 

This implies that cllu C B2 U T2 where B is the body of U and T is the tail. 0 E B, so 

VLB. 

Fix a transversal for a: {co,. . . , c,_ I}. Let F denote the subset of Poll A consisting 

of all polynomials of the form p(x,ca,. . ,c,_~) where p(x,j) E Clo,+iA. Since m = 

IFvc~,(n + l)l, we have (FJ I m. 

Choose distinct elements U,U E Y. Since (0,l) E CgA(u,u)]u and U = e(A), we can 

find q(x, j) E Clof+l A and a E A’ such that eqA(u, a) = 0 # eqA(u, a) or the same 

with u and v switched. For each ai choose bi E {CO,. . . ,cn-l} such that (ai,&) E c(. 

Then since C(a, cr; 0), (u, v) E c( and 

eqA(u, 2) # eqA(r, a), 

we get 

eqA( u, 6) # eqA( u, 6). 

Each bi is a member of {CO,. . . ,cn_l} so qA(x,6) equals some q’(x) E F. Now we 

have 

eq’(u) alu - OA eq’(u) = eqA(u,b) a/u eq(u,a) = 0 E v, 

so es’(u) and eq’(u) are distinct members of V. We also have that eq’( Y) C V since 

Y is an a-class and V is an alU-class. 

Let F’ be the subset of F consisting of polynomials p(x) E F such that ep( Y) C V. 

Define a function @ : Y + VIF’I as follows: 

@3(w) = (ep(w)),,F,. 

In the last paragraph we showed that for any u # u in Y there is a q’(x) E F’ such that 

eq’(u) # eq’(v). It follows that the function @ described in the last displayed equation 

is l-l. Hence JYI < IV1 IF’1 < [Vim. It remains to show that [VI 5 m. _ 

V C B, so Alv is Mal’cev. Since a is abelian, XIV = 1~ is abelian. We get that A/Y is 

affine, since any abelian Mal’cev algebra is affine. The algebra A~JJ has a least nonzero 

congruence since (by Lemma 2.4 of [3]) restriction of congruences is a homomorphism 

from the interval Z[O, a] in Con A onto Con AIv and plv > 0~. This shows that AIY 

is polynomially equivalent to a subdirectly irreducible module over a finite ring, R. 

As shown in [5], this implies that [VI < (RI. The elements of R may be identified 

with the unary module polynomials that fix the additive identity element. If we take 

0 E V to be the additive identity element of the module structure of AIV, then we may 

consider the elements of R to be the unary polynomials T(X) of A]” which satisfy r(O) 

= 0. Suppose that Y(X) = sA(x,g), s E Clo,+lA, S E Am, is such a polynomial. For 



K.A. Kearnesl Journal of Pure and Applied Algebra 112 (1996) 293-312 311 

each gi we choose hi E {CO,. . . , c,_l} such that (gi, hi) E CC. If d is the pseudo-Mal’cev 

polynomial of U, then d is Mal’cev on V C B. We have es*(O,j) = 0 E V, so when 

XEV 

d(es*(O, 9), es*(O, g), es*(x, g)) = es*(x, S) = d(es*(x, 9), es*(x, j), es*(x, g)) 

since all the elements in this equation of the form es*(-, -) belong to V &B. (This 

observation is based on the fact that all such elements are cc]t,-related to 0 and O/CIIL~ 

= V.) From C(a,cc;O), we can change each # to h and get _ 

d(es*(O, g), es*(O, &), es*(x, h)) = d(es*(x, G), es*(x, h), es*(x, 6)). 

The right-hand side equals es*(x,J) while the left-hand side equals d(O,es*(O,h), es* 

(x,h)). Since e(v = idv, we get that for x E V it is the case that 

r(x) = es*(x, j) = d(0, es*(O, h), es*(x, h)). 

But s*(x,h) E F since each hi E {co , . . . , c,-1). What we have shown in this paragraph 

is that for every T(X) which represents an element of R there is an element w(x) = 

s*(x,h) E F such that r(x) = d(O,ew(O),ew(x)). Hence the function 

$ : F -+ R : w(x) +-+ d(O,ew(O),ew(x)) 

is onto. This shows that 

IV1 5 (RI I IFI 5 m. 

From our earlier arguments we get that lY I 5 mm and this finishes the proof. 0 

Theorem 5.2. Assume that A is an algebra of cardinality n and that V(A) is resid- 

ually small. Let B E V(A) be a jinite subdirectly irreducible algebra in V(A) with 

monolith p where typ(O,p) # 1 and 5 $ typ{B}. Then 

IBI 5 nn” 
n+Z 

. 

Proof. From typ(0,~) E {2,3,4} and Theorem 4.2 we get that (0 : p) is abelian. 

By Lemma 3.3, the index of (0 : p) is at most IAl = n. This already shows that 

PI I Ikl = n iftyp(O,p) E {3,4} since (0 : 11) = 0 in this case. (In fact, B E HS(A) 
in this case.) If typ(0,~) = 2, then Theorem 5.1 shows that IB\ 5 n . mm where m = 

IFv(A)(n + l)j. Using the estimate m 2 nnn+‘, which holds in any variety generated by 

an n-element algebra, one computes that IB\ 5 nnnnf2 as claimed. 0 

This completes the proof of our main result. Theorem 5.2 describes a recursive 

function of IAl which bounds the size of certain subdirectly irreducible algebras in V(A) 

when this variety is residually small. It is known from McKenzie’s recent work in [7] 

that there does not exist a recursive function which bounds the size of every subdirectly 

irreducible algebra in V(A) when this variety is residually small. His construction works 
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for certain algebras with type 5 quotients. This leaves open the following question: 

Assume that A is finite and V(A) is residually small. Is there a recursive function 

S such that every subdirectly irreducible in V(A) which omits type 5 has cardinality 

I f(lAl)? 
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